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1.1 Objective of the Investigation 

The object of this investigation is to determine 
theoretically the boundaries of the regions of parametric 
resonance of a simply supported stiffened rectangular plaee 
with closely spaced stiffeners of uniform size subjected to 
periodic in-plane boundary forces. The theory is developed 
so as to apply to plates reinforced by either or both 
longitudinal and transverse stiffeners. The effects of 
torsional rigidity and rotary inCrtia of the stiffeners are 
also taken into account. Finally, the effects of size and 
location of the stiffeners on the boundaries of the regions 
of parametric resonance are studied. 

1.2 History 

Parametric instability mainly concerns the study of the 
response of a mechanical ur elastic system to certain types 
of periodic loads. The term "parametric instability'' stems 
from the fact that the time-dependent load appears in the 
coefficients (parameters) of the differential equation of 
motion of the system. 

by several investigators (1, 2, 3, 4) .  A complete history 
of the parametric instability of elastic systems through 
1951 is given by Beilin and Dzkanelidze ( 5 ) . *  A more 
recent review af the histary is given by Evan-Iwanowski ( 6 , ' t ) .  

The problem oE parametric instability has been studied 

An article by Beliaev ( 8 ) ,  published in 1924, is 
considered to be the first analysis of parametric instability 
of a stuucture, 
simply-supported beam subjected to periodic axial loads of 
the type P(t) = po+Pt coset. 

The nonlinear problem associated with the parametric 
response of an elastic column was studied by Weidenhammer (9, lo), 
by Bolotin (11, l2), and by Grybos (13). Bolotin and Grybos 
not only studied the nonlinear effects in the principal 
region of instability, but also the higher order parametric 
instability regions. 

He studied the parametric response of a 

* 
Numbers in parenthesis designate references listed 

in the Bibliography. 
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1 verification of the principal region of 
orted by Beliaev and others was first 
zawa (14). Bolotin (11) , verified 
ncipal region of parametric resonance 

and he also verified the behavior of the column within the 
region of instability. The most extensive experimental investi- 
gation of the boundaries of he princkpal region was performed 
'by Somerset (15, J-lfii), in 196 , who was the first to take P , P 
and of the axial load, P (t) = Po + PI cos e t, to be indep8ndeftt 
variables , 

The rksearch in the area of parametric instability of 
plate structures is not as extensive as for columns, 
investigation on rectangular plates was done in 1936 by 
Efnaudi (17) . 

The first 

Bolotin (18, 191, was the first to investigate nonlinear 
problems of parmetric response of a rectangular elastic plate. 
Somerset (20, 21, 22) in 1965 reinvestigated Bolotin's n o w  
linear problems, and his investigation is mainly concerned 
with an experimental study of the nonlinear problem. This 
experimental study is the only e 

erfomed in the area of pl 
in,the investigation presented here, 

rimental work that has 
s prior to the work done 

Vu arid L a i  (23, 241, 1966, investigated the linear and 
nonlinear problems of parametric response of a sandwich plate. 
~ ~ r ~ t ~ ~ y a n  and Gnuni (25, 261, 1961, studied the linear and 
nonlinear problem for an infinitely long three layered plate 
and took into account linear damping. The nonlinear problem €or 
three layered plates was also studied by Schmidt (27) in 1965, 

Research in the proximity of the area of parametric 
instability of stiffened plates was done by 
~ h ~ ~ h a ~ ~ ~ ~ ~ ~  (28, 29) in 1959 and 1960, They studied the 
vibrational and dynamic stability characteristics of 
rectangular anistropic plates using a theory not based on 
Kirchhoff's h p t k e s i s ,  

ratsumyan and 

1.3 Background fnformatim 

There are several mathematical models which can be used 
to represent a stiffened plate system. In this investigation, 
two different mathematical models are considered; which are: 
(1) The plate and stiffeners each considered as discrete 
elements. 
(2) The stiffened plate considered as an equivalent orthotropic 
plate. 

The first mathematical model is an "exactt1 model. The 
parametric reson nee of a rectangular plate reinforced w i t h  
both longitudinal and transverse stiffeners using the "exact" 
model was studied by Duffield and Willems (30). The second 
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mathematical mocle1 requires some justification for its use 
since it is an approximation. An orthotropic structure has 
mechanical properties which possess three orthogonal planes 
of elastic s try at each point, Examination o€ a stiffened 
plate shows that its overall mechanical properties are 
different in different directions. 

Gerard studied the orthotropic model for atability 
d states (32) that 'torthotropic theory may be used 

for compressed plates with three or more stiffeners, for 
plates in shear with any nu&er of longitudinal stiffeners 
and for transversely stiffened plates for relatively small or 
large values of E3C/bDn (bending rigidity parameter), Gerard's 
statement for compressed plates is based mainly on the results 
of Seide (32). Seide's results show that the error in the 
stability parameter using the orthotropic plate theory for 
stiffened plates w i t h  three stiffeners is of' the order of ten 
percent. The error increases for small values of the bending 
rigidity parameter of the stiffeners. The error decreases, 
however, with an increasing number of stiffeners. 

Using an "exactt' modell ,  Wah (33) studied the vibrational 
characteristic of a stiffened plate and compared his results 
with those of an orthotropic plate. His study reveals closer 
agreement between the "exact" model composed of three stiffeners 
and the orthotropic model, as compared to the stability case. 
However, only one parameter €or bending rigidity was studied. 

the stiffened plate i s  treated as consisting of discrete elements. 
When the ribs and stringers are of a uniform size respectively 
and are closely spaced, the stiffened plate can be considered 
as an equivalent orthotropic plats. 
the stiffened plate as an equivalent orthotropic plate lies in 
the determination of the equivalent orthotropic rigidity 
constants for the plate, There are both experimental and 
theoretical methods available for the determination of the 
rigidity constants. 

xn the investigation, several. assumptions are made when 

The problem of treating 

Procedures to determine the rigidity constants experi- 
mentally were devised by Hoffman and his coworkers (34, 35, 36) 
and Beckett (37) (. The trouble with the experimental determination 
of the rigidity constants is that the plate must first be 
designed with no knowledge of the magnitude of the rigidity 
constants and then redesigned after the rigidity constants are 
found, Hugfington (38) devised a thearetical method for the 
determination bE the rigidity constants of a sti€fened plate 
with only closely spaced ribs. He based the equivalence of the 
real system and the orthotropic system upon the equality of 
their strain energies. An experimental verification of his 
results showed good agreement. Another approach used by several 
investigators (37, 38) is to average or '"8mear outt' the elastic 
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and geometric properties of the stiffener over the stiffener 
spacing, The advantage of the theoretical approach is that 
the obtained equivalent rigidity constants are expressed in 
terms of the st i f€ened plates elastic and geometric pzwprties. 
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LYSIS 

The invest iyat ion presented i n  t h i s  ana lys i s  is l imited 
to a attic system so eompstructed t h a t  t he  s t i f f e n e r s  are 
attac 
of the st iffe ers coincides  w i t h  t he  middle-surface o f  t h e  
p l a t e ,  3 t  is assumed tha t  the  a ~ s ~ p t i o ~ s  of both t h e  classicalt 
plate and beam theor i e s  hold for t h i s  system. ft is a l a o ~  
assumed t h a t  : 

t o  the  plate i n  such a manner t h a t  t he  middle-surface 

(1) The plate, ribs and s t r i n g e r s  are fabricated from 

(2) The ribs and s t r i n g e r s  respect ively a l l  have t h e  same 

(3) A perfect bond exists-hetween the plate and the 

isotropic materials 

elastic and geometric propert ies  

s t i f f e n e r s  

I n  t h i s  invest igat ion i n  the in-plane loading is takhn to 
be periodic i n  nature ,  The.magnitude of the  in-plane loading, 
applied a t  t h e  boundaries of the systmn, w i l l  propagate at  t h e  
speed o f t h e  lpngi tudinal  fkequency of the system. 
frequency of the per iodic  in-plane boundary loading is taken t o  
be considerably below t h a t  of t h e  longi tudinal  frequency, it is 
reasonable t o  assume tha t  the magnitude of t h e  loading is 
independent of the  space coordinates of t h e  system, T h i s  
implies t h a t  t h e  whole system instantaneously senses the  
magnitude 0% the loading and tha t  the  in-plane i n e r t i a  e f f e c t s  
due t o  t h e  per iodic  in-plane boundary loading are negl igible .  

I f  t h e  

2.2 Basic Energy Expressions 

The kdnetic and po ten t i a l  energies  of the equivalent  
or thotropic  p l a t e  can be obtained d i r e c t l y  from the  k i n e t i c  arrd 
po ten t i a l  energies  of the  s t i f f ened  p l a t e  when it is considered 
as a discrete ele n t  model. by using the "averaging" or "smearing 
out" technique. The t o t a l  p o t e n t i a l  energy of the discrete 
element model is t h e  sum of the  s t r a i n  and externa l  po ten t i a l  
energies.  I n  t h i s  invest igat ion the  external in-plane forces  
are l i m i t e d  t o  those which are expressable i n  terms of a the- 
dependent po ten t i a l ,  Thus, far the discrete system t h e  to ta l  
potential .  energy (39) is 
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and E, are the moduli of elasticity, Iri and fsk 
nts of knertia, and Gy-J,i and GskJsk are the 
gidities at the? ith r.d and kth stringer respee- 

tively, s@e Fig notation page for the definition of 
the remaining s q, (I).) The effect of the toriithal 
rigidityiof thi? stiffeners is included in the determination of 
the total potential energy, Eq. (l), for the dynamic system. 
The averaging or "smearing out" of the effects of the 
stiffeners' results i n  the following equation for the total 
potential energy, which is 

a b  

a*= 
0 0  

in which d is the spacing between the centers of the ribs 
and 1 is the spacing between the centers of the stringers. 

The total kinetic energy of the discrete system is the 
sum of the kinetic energies of the plats and the stiffeners (39). 
Thus the total kinetic energy is 

6 b  

.t. 

in which Ipx and Ipy are the mass moments of inertia per unit 
area of a small characteristic element of the plate about axes 
x' and y' which pass through the center of gravity of the element 
and which are parallel to the x and y axes respectively, IVri, 
I"ri and IgSk are the mass moments of inertia about the 
neutral f D )  and longitudinal ( ' I )  axes for the ith rib and kth 
stringer respectively, The effect of rotatory inertia is 
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St ringer 
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ed in the determination of the kinetic energy, Eg. (31 ,  
for the dynamic system under consideration. 
of the stiffeners is averaged or fiFsmeared outFf the expression 
for the kinetic energy takes the form 

When the effect 

-9- (4) 

2.3 Ramilkon*s Principle 

formulated in terms of Hamilton's principle, HamiSton's 
principle is essential to this investigation in that it is the 
starting point for  the determination of the equations of 
motion and boundary conditions fortkbdynamic systems under 
consideration. The mathematical statement of Hamilton's 
principle 5or a aonservative system 1s 

The dynamic behavior o€ a continuous system can be 

(5) --- b A - a  
in which 

and 

in which T is the kinetic energy of t h e  system, V is the 
potential work energy of the noninertial forces acting on the 
system, and tl and t2 are two instants af time. 
A is generally referred to as the "action integral" and It is 
known as the "Lagrangian function". The formulation of the 
dynamic behavior for the system under investigation in terms 
of Hamilton's principle can be obtained by the substitution 
of E q s .  (2) and (4) into Eq. ( 5 1 ,  which results in 

The expression 
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2.4 E ~ a t i o ~ s  of Motion and Boundary Conditions 

en the behavior of the system is formulated in terns of 
Hamilton’s principle, the problem reduces to the determination 
of the necessary and sufficient conditions on the function 
w(x,y,t) such that the integral A of Eq. (8) is stationary. 
The determination of these conditions requires the use of 
calculus of variations, se ‘references (40, 41, 42, 43). 
The necessary conditions which the €unction w must satisgy 
generally take the farm of differential equations with admissible 
boundary aonditions. 
more difficult to determine. However, Hamilton’s principle, 
baaed on physical considerations, serves as the sufficient 
condition. 

The sufficient conditions axe mathematically 

fn this study, the function w ( x , y , t )  with continuous 
fourth order partial derivatgves in R, is taken to be the 
function which makes the inkegral A in Eg. (8) stationary. 
A comparison function in the neighborhood of w(x,y,t) can be 
constructed of the form 

-0- (9) 

in which 6 is a small but otherwise arbitrary scalar and 
~ ( x , y , t )  is an arbitrary function with continuous fourth 
order partial derivatives which vanishes at the end points 
t = tQ and t = tl. 
because o€ the formulation of Emilton’s principle, Since 
w(x,yft) gives the integral A a stationary value, then this 
implies that for G ( x ,  y, t) 

This last condition on k k s  required 

Equation (10) reveals that the integral A(w+€q ) , as a function 
of e , takes on a stationary value when E = 0, Therefore, 
the necessary condition for A ( w  + e l )  to have a stationary 
value at C = 0 is 

The replacement of w(x,y,t) in .Eq. ( 8 ) by the comparison 
€unction given by Eq. (9) and the corresponding application of 
Eq. (11) to Eq. (8) gives 
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After considerable manipulation and applying the technique o f  
integration by parts or the divergence theorem 

_. &A d%,..-% --- (13) 
bxi 

in which y i a  a continqous function, Xi i s  the ith coordinate 
ob a set of coordinates, $5 is the surface or contour of the 
region R, a n is  the normal to S ,  Eq, (12) takes the form 



-0- (14) 

The ~ ~ ~ 1 i ~ ~ ~ i ~ ~  of a of the calculus of 
variations" to Eq. :1[14) together with the howledge t h a t q  is 
an arbitrary function yields a partial differential equation 
with admissible ~ o u n d ~ r y  conditions that constitute the necessary 
conditions on w(xpy,t) far A to be stationary- The partial 
differential equatbnthat results fran Eq. (14) is 

-0- (15) 

The determination of the admissible boundary conditions fK0m 

the following relations ax/ bn O for R = y ,  & x /  bn = 1 
for n = x ,  
Thus, the boundary conditions for the edges of the plate 
parallel to the y-axis are: 

) far a rectangular region requires the application of 

b y / &  n = o for n = x ,  and b y / b n  = 1 €OK n = y. 

--- (16) 

W prescribed - y\= 0 

e-- (19) 



i n  Eq.  (16); G ia the shearing modulus of e l a s t i c i t y  for the 
plate.  
parallel to the x-axis are: 

The b&ndary conditions for the edges of the plate 

or 

W 

--- ( 2 0 )  

--- (23) or bW prescribed - aq - 0 
F w 

A t  the comers of the rectangular plate the following conditions 
must be satisfied 

in which w must be evaluated at the corner, or 

wprescribed at the corners *y1= 0 --- (25) 

Equations (15) through (25) represent the necessary conditions 
w ( x , y l t )  for 6 A(w) to be stationary. 

I f  the effect of torsional rigidity is neglected and if. 
w is taken to be independent of time, then Eq, (15) reduces to 
the form 
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in which 

and 

--- (29) 

--- (30) 

Equations (27) through (31) agree with the values of the 
arthotropic rigidity constants obtained by Huffington (36) 
for the limiting ease of elosely spaced ribs only, These 
sane three equations also agree with the orthotropic rigidity 
constants proposed by Lechnitskii (44). Equation (26) 
represents the governing equation for the case of static 
stability of an arthotropic plate. 

The substitution of E q s ,  ( 2 7 ) ,  (28 ) ,  (30) and (31) 
into Eq. (15) along with the introduction of additional 
parameters yields 

3%' by' 
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in which 

d R 

and 

--- (33)  

*-- (34) 

(35) --e 

which replaces Hc in E q s ,  (29). In terns Q€ the parameters 
introduced above, the boundary conditions for the edges of 
the plate parallel to the y-axis take the form 

ox 

\hl prescribed 

or 

- b W  prescribed --- (40) 
b x  

The boundary conditions f ~ r  the edges of the stiffened plats  
parallel to the x-axis in term of the parameter given above 
are 
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or 

(42) W prescribed ...-e 

--- (43) 

--- (44) 

2.5 Solution of the Equation of Motion 

This sect ion is concerned with the determination of a 
solution of Eq. (32) for the case of a rectangular s t i f fened 
plate with ahply-supported edges, see Fig. 2. The boundary 
conditions for- the simple-supports can be found from the 
equations for the admissable boundary conditions, Eqs. (37) 
through (44). The boundary conditions for the contour of 
the s t i f fened rectangular plate  are 

--- (45) 

-0- (46) 

--- (47) 
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A Simply-Supported Equivalent Orthotropic Plate 



and 
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--- (48) 

The so lu t ion  of Eq. (32) is sought i n  t he  form 

--- (49) 

The funct ions (p (x,y) must form a complete set of 
funct ians  (45) ov@ the rectangular region of t h e  stiffened plate 
and they must also s a t i s f y  t e r m  by term the boundary condi t ions 
given by Eqs. (45) through (48). 
that are complete over the region of the s t i f f ened  plate 
OSxSa an& O S y s b  and which s a t i s f y  t h e  simply supported 
boundary condi t ions are 

A set of functions,  @={x,y)# 

Since@ , Eq. ( 5 0 ) ,  represents  a complete set of funct ions,  
the  cond8!ion for linear independence 

--- (53) 

requires tha t  each Cm must be equal to zero. 
has t h e  same form as Eq. (53) thus  

Equation (52) 
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8 



for m = 1,2,---, R = 1,2,--00. Equation (54) is valid for 
any type of time-dependent in-plane edge forces acting on both 
the plate and stiffeners provided that the forces can be 
expressed in terms of time-dependent potentials, 

effect of harmonic in-plane edge forces on the parametric in- 
stability of the stiffened plate is considered, see F i g .  3. 
The loading on the edge of the plate is 

In the investigation presented in this chapter only the 

and 

in w h i c h 5  and A' are proportionality factors relating the 
magnitude of the static and variable compnents respectively 
of the in-plane loading on the plate in the x-direction to 
the corresponding components &a the y-direction. The in-plane 
edge load on each rib and stringer respectively is the same 
and for the ribs has the form 

and for the stringers 

pe (+)= ps ys X(d*,-cV;IdN*r cos 8% -0- ( 5 8 )  

h L 1, 
in which T rtY'r,=V and V' El are proportionality constants 
which relate the magnitude of the stiffener loading to the 
plate loading, The substitution of Eqs. (55) through (58) into 
EqSo (30) and (31) gives the expressions for the equivalent in- 
plane edge loads Nk and Nq for the orthotropkc plate, which are 

I --- (59) 

and 
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-1- (61) 

--- (62) 

and 

(64) -.-- 

The substitution of E q s .  (59) and (60) into Eg, (54) yields 

for rn = l,2,---, n - 1.,2,---. Equation ( 6 5 )  can also be 
written in the following form 
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in which 

--- (67 )  

--- (68) 

--- (69) 

and 
--- (72) 

The division of Eq. (66) by [B 
the subsequent rearrangement o??the resul?!ing expr-sion yields 

- MXO (C +Y, D~)] and 

rmn (t)+fL*mn (i-2Amn cosek) Tw&9= 0 ,tn,n= 1,2;-----,- --- (73) 
in which 

Later on it is shown that the expression for the static 
buckling load, Nx,.,r, has the form 

The substitution of Eq. (76) into Eq. (65) gives 



When TT 
magnitude of stress on both the plate and stiffeners, Eq, (77) 
reduces to 

= vtr =v, = v: = 1, which represents the same 

It is also shown in the next section that&. mg as given in 
Eq, (74) is the natural Erequency for the equivalent orthotxbpic 
plate. 

Since the form of Eq, (73) is identical for  all m and n 
the indices can be omitted, hence 

This equation is the well known Mathieu's equation 

2.6 Solution of the Differential Equation w i t h  Periodic 
Coefficients 

Equation (79) can be reduced from a second order equation 
to a system of two firstsorder equations. For this purpose, 
Eq. (79) is expressed in the form 

in which 

The introduction of the new variables 

--- ( 8 2 )  

--- (83) 
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into Eq, (80) reduces it to the following two differential 
equations 

and 

1-0 ( 8 5 )  

Equations (84) and (85) can be cordbined through the use of 
matrix notation to give 

-0- (86) 

in which < x 3  is a column matrix (vector) with components 
x l ( t )  and x2(t)  and 

a square matrix of the second order. 

The theory associated with the solution of Eq, (86) is 
discussed in references (39, 46). The results of the theory 
reveal that the solution of Eq. (79) or (86) is bounded 
(stable response) over certain defined regions and is unbounded 
(unstable response) over the remaining defined regions. The 
boundaries between the stable and unstable response regions are 
characterized by the periodic solutions 

T (%+r') = T(tJ --- (88)  

with perid T' and 

with period 2T'. Since this investigation is concerned with 
the onset of parametric resonance it is thus necessary to 
determine the conditions for which Eq. (79) or (86) has 
periodic solutions, Since the required solutions are periodic, 
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they can be ~ x p ~ e ~ ~ ~ d  in terms of a Fourier series, thus for 
a region of 2T' 

represents the solutions with perid Tt and 

represents the solutions with period 2T'. Sere the period 
T' is given by 2 g  /e . 
periodic solutions satisfy the Dirichlet conditions. 
coefficients ak and bk can be evaluated through the u8e of 
the expressions 

These series converge since the 
The 

--- (92) 

and Eq. ( 8 8 ) .  The evaluation of the coefficients yields the 
following information 

--- (95) 



25 

The application of the information contained in Eqs.  (95) 
through (97) to Eq. (90) reduces it to the form 

In a similar manner, 

rpg 
c 

cos \CG 2; + bu s\n w+ --- (98) 
2 -1 2 

Eq. (91) can be reduced to 

-0- (99) 

9 The substitution of Eq. (98) i n to  Eq. (79) and combinin 
k 8 t and dividing byR, like terns of I, cos k 8 t and s i n  

yields 2 2 
as COS ~ 0 %  -t- 

2 
- Q, -A,& COS%%+ 
2 

bK  SI^ C(s . t -a , z~~  closet COS- - 
2 2 
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7 

L 

The substitution of E q s .  (101) and (102) in Eq. (100) gives 

--- (103) 

If % is a linearly independent set of functions, then the 
condition 

--- (104) 
requires that the r .  's be equal ta zero, Equation (303) 
has the same form as Eq. (104) and the functions 1, cos k 8 t 

functions. Thus, the coefficients of Eq. (103) are equal to 
zero, which implies that 

and sin k 8 t form a linearly independent s e t  of 2 
2 

--- (105) 
2 
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--- (107) 

and 

The multiplication of Eq. 105) by 2,  Eq. (106) by 1/4 for 
k = 2 and Eq. (106) by l/k 4 for k = 4,6,-- yields 

(109) om--. a,== ZM== 

and 

in  which 

The substitution. of Eq.  (109) into Eq. (110) gives 
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--- (113) 

The introduction of the parameter 3 into Eqs,  (107) and 
(108) yields 

--- (114) 

The first system of equations, Eqs. (111) and (113) contains 
only a coefficients and the second system of equations, 
E q s .  (514) and (115) contzfhs only bk coefficients. The 
existence of non-trivial solutions for the above two systems of 
homogeneous equations requires that the ak and % coefficients 
be non-zero. This condition requires that the eterminant of 
the coefficients of each of the two systems be equal to zero. 
Hence, the condition for the existence of periodic solutions 
with period 2 W / e  has the form 

and 

--- (116) 

--- (117) 

‘ in which [I] is the unit matrix, 
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The parameters R 2,  AA , and 'ZT are given by E q s ,  (74) 8 (75) 
and (112) respectively. Sirailarily the substitution of 
Eq. (99) into  Eq. (79) yields the conditions for the 
existence of periodic solutions with a period 
are 

4%'/e, which 

and 

i n  which 

"-0 (120) 

-0- (121) 
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and 

The eigenvalues, 3 which are necessary for the exis tence 
of periodic so lu t ions  of Eq. (66)  are determined numerically from 
Eqs, (l16), (117), (120) and (121) , 

Finally it can be shown tha t  for .&,,ether@ exist per- 
iodic so lu t ions  w i t h  period 2T i n  the v i c i n i t y  of 

and periodic so lu t ions  w i t h  period T i n  the v i c i n i t y  of 

Equations (124) and (125) g ive  a r e l a t ionsh ip  between the 
frequency of t h e  in-plane boundary forces and t he  frequencies 
of the free vibra t ions  of the s t i f f ened  plate, near which the 
formation of unboundedly increasing v ibra t ions  is possible. 
Thus, these re la t ionships  def ine  the v i c i n i t y  of the  regions of 
parametric i n s t a b i l i t y  for a s t i f f ened  plate. Also, Eqa. (124) 
and (125) i nd ica t e  that  there exihts an i n f i n i t e  number of 
regions associated w i t h  e a c h a ,  Somerset ( 2 0 )  cal ls  the mode 
associated w i t h  a pa r t i cu la r  .riahe of fl. as the s.pati&l mode 
-.and each mode associated w i t h  E q s ,  (124) and (1225) for a given 
,apakbil.mode is called a temporal mode. 
adopted in this invest igat ion.  

T h i s  nomenclature is 
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2.7 Special C a s e s  

a. Natural  Vibrat ion C a s e  

This  s e c t i g n  is concerned w i t h  t h e  determination of the 
n a t u r a l  f requencies  for the equiva len t  orthotropic plate sub- 
jected t o  static in-plane edge forces. 
components and H t of the  harmonic in-plane loading are 
equal to zero,  Eq. (y9) reduces to the form 

When the  v a r h b l e  

If a s o l u t i o n  to Eq, (126) is sought i n  t h e  form 

--- (127) 
Then the s u b s t i t u t i o n  of Eq. (127) i n t o  Eq. (126) yields 

A = * i . n  -0- (128) 

Thus the s o l u t i o n  of Eq. (124) is  

or 

--- (130) 

--- (131) 
and 

From Eq. (130) it is seen tha t  fl,. given by Eq. (74) r ep resen t s  
t h e  n a t u r a l  f requencies  of the equiva len t  o r tho t rop ic  plate for 
a specific value of Nxo and n. 
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n the  effect of rotatory i n e r t i a  is neglected and 
when M~~ and Nyo are equal t o  zsro, Eq. (74)  reduces to the 
form 

-0- (133) 

i n  which 

A,,=M --- (134) 
Equation (133) can be wri t ten  in an expanded form i n  terms of 
t h e  elastic and geometric properties of a s t i f f ened  plate 
w i t h  uniform material proper t ies ,  which is 

--- (135) 
i n  which = a b .  T h i s  equation agrees w i t h  the r e s u l t s  
obtained by Mikulas and McElman (37) for the same case. I f  
Eq. (74) ,  for the case of NxO and N equal  to  zero, is 
wr i t ten  i n  an expanded form xn termgoof the  orthotropic r i g i d i t y  
constants ,  then it gives  

T h i s  equat ion  agrees w i t h  the r e s u l t s  obtained by Hoppman (47). 

b. Static S t a b i l i t y  Case 

This sec t ion  is concerned w i t h  t h e  case of static s t a b i l i t y  
of t h e  equivalent  orthotropic plate. T h i s  case corresponds to 
the condi t ions that  M,, i s  not  specified and t ha t  Mxt is equal  
t o  zero. Also for t h i s  case t h e  def lec t ion  of the orthotropic 
plate is independent of t i m e .  Subject t o  these condi t ions Eg. 173) 
takes the form 
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i n  which T, ks a constant.  
a non-txivikl so lu t ion  of Eg: (137) yields 

The condition for the  exis tence of 

-0- (138) 

i n  which Nxcx is the cri t ical  buckling load. 

Eq. (138) reduces t o  

For a plate w i t h  
only in-plane loading i n  t h e  x-direction, that is - 0 ,  

--- (139) 
Equation (139) can be written i n  the following expanded form 

When m = n = 1 the equivalent  or thotropic  p l a t e  buckles i n t o  
a one-half s ine  wave m o d e .  For t h i s  case when ??JL = I, Eq, 
(140) takes the  form 

-0- (141) 

This  equation agrees w i t h  the result given by Timoskenko and 
Gere (48). 



34 

3, RESULTS 

The theory developed in Section 2 led to the determination 
of the eigenvalues of four matrices for the problem studied. 
The numerical prpcedure used to determine the eigenvalues of 
these matrices is based on the idea of reducing the original 
matrix to a-similar matrix whose eigenvalues are much easier to 
determine. 

The algorithm used in this investigation to reduce the 
matrices to similar matrices was developed by Francis (49, 50, 
51) which he calls QR-Transformation. The computes subroutines 
based on this algorithm are from the SHARE library program 
package 3006-01 and were written by Imad and VanNess (52) .  

3 . 2 Convergence S tudiss 

The theory developed in Section 2 for the orthotropic 
plate resulted in separate but similar differential equations 
for the determination of the unknown t h e  functions which are 
the coefficients of a series which represents the deflection 
function w(x,y,t) of the stiffened plate. Each of these dif- 
ferential equations had the form of Mathieu's equation. The 
solution for each of these differential equations was represented 
by a Fourier series and this led to the determination of the 
eigenvalues of four matrices whose size was dependent on the 
number of terms taken in the Fourier series. The square root 
of the eigenvalues of these four matrices represents the value 
of e/za on the boundaries of the regions of instability, 
Figure 12, which is valid for any spatial mode, shows the first 
eight temporal mode regions. In section 2.6 it was shown that 
a temporal mode existed for each term of the Fourier series. 

The convergence curves given by Figs. 4 through 11 shows 
how many terms of the Fourier series are needed to obtain 
what appears to be convergence of the magnitude oE the eigen- 
values for a specific example. These sight graphs represent 
the value of%/zn on the upper and lower boundaries of the 
Eirst four temporal modes at&= 1.2, where& is the abscissa 
of Fig. 12, A study of the convergence characteristics of the 
magnitude of the square root of the eigenvalues showed that 
more terms were needed to obtain convergence as the value of 
&.was increased and as the order of the highest temporal mode 
was increased. Thus+= 1-2 represents an extreme case, 
Examination of the eight convergence curves shows that the 
value e/2S for the lower curve of the fourth temporal mode is 
the slowest to converge but it does appear to have converged 
to the correct value for an eight term approximation. The 
value of6/252for the eighth and tenth term approximation is 
the same for the first six significant figures. Bowever, the 
error between the sixth and tenth term approximation is less 
than one tenth of one percent. The error in the magnitude of 
the eigenvalues must be kept small in order to prevent mis- 
leading over-lapping of the temporal modes, expecially the 
higher order temporal modes. 
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3.2 Theoretical 

The r e s u l t s  for t he  a r a ~ ~ t ~ i c  respnse of an ortho- 
e are given b i g ,  12. These r e s u 2 t s  plotted i n  

Z s l )  parameter space represent  t he  eigenvalues, 
inad f r o m  the matrices [B] 1, through [B] 4 

associated w i t h  the  so lu t ion  of Mathieu's function. The 
square root of the  e i ~ ~ ~ v a l u e ~  
of 6 1 2 - n .  on the  boundaries be 
and i n s t a b i l i t y .  These r e s u l t  re also presented i n  table 
form i n  Tab th~ough Three i n  the Appendix. I f  a given 

c t i v e l y  f o r  a given s t i f f ened  plate, 
are such t h a t  eke p /2& f a l l  within t h e  
shaded areas given e s t i f f ened  plate is  i n  
an unstable  condi t ion,  Figure 12 shows tha t  the pr inc ipa l  
region of i n s t  i l i t y ,  t h a t  is the one associated with 

results show t h a t  the width of the  regions of i n s t a b i l i t y  I 

decreases for the higher order temporal de regions. The 
r e s u l t s  also revea l  t h a t ,  i f  possLble, or thotropic  plate 
should be designed so t h a t  the  parameters2 and /zn- f a l l  
within the stable regions.  

rrespond to  the  values 
en the  regions of s t a b i l i t y  

e values ~f J"L and calculated f r o m  

8 / 2 . f & =  1, i the m o s t  dangerous s ince  it is  the w i d e s t ,  The 

The format of Fig, 12 is s l i g h t l y  d i f f e r e n t  b u t  similar 
t o  the S t r u t t  diagram normally associated with Wathieu's 
equation, The form chosen seems t o  be more converaient for 
engineering purposes. The r e s u l t s  given by Fig. 12 are the 
m o s t  complete set of r e s u l t s  known i n  teras of the  number of 
i n s t a b i l i t y  regions presented and the  range aver which Ais 
taken for this a r t i c u l a r  Eorm of presentat ion,  It took six- 
teen terms of t e Fourier series so lu t ion  of Mathieu's equation 
to  obtain the r e s u l t s  pr sented, The i n s t a b i l i t y  regions 
obtained fr ~~~~~~~ 53 quation which are presented i n  pre- 
viously pub hed invest a t ions  (1, 25, 4 1 appear t o  be 
based on j u s t  a two or  three term approxi t i o n  s ince  the 
camputation 0% the eigenvalues can be done by hand, 
term a p ~ ~ o x ~ ~ a ~ ~ o n  of t h e  ~ ~ ~ ~ ~ ~ i ~ ~ t y  regions up to* = 0.6 
is given by Figure 13. A ~omparioon of Figs. 12 and 13 
shows tha t  a two tern ~ ~ ~ ~ ~ x i ~ ~ ~ i o n  gives good r e s u l t s  for t h e  
range of M presented for t r i n c i p a l  reqion of i n s t a b i l i t y ,  
However, t he  t w o  tern appro ion gives  iktcreasing poorer 
r e s u l t s  for the higher order  regions of i n s t a b i l i t y  a s f i i n c r e a s e s ,  
p a r t i c u l a r l y  for the  l o w e r  s t a b i l i t y  boundary. Thus a t w o  term 
approximation leads to incor rec t  information about the location 
of the higher  order i n s t a b i l i t y  regions. 

A t w o  

3.3  Evaluation of ~ e s u l t s  

The t h e o r e t i c a l  r e s u l t s  presented i n  the  last sect ion,  
Fig, 1 2 ,  show that the most  dangerous region of i n s t a b i l i t y ,  
from the viewppint of width, is the first temporal mode 
associated with any spa t ia l  mode. This w i d e  width of the  
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i n s t a b i l i t  w i d e  band of frequencies 
table, The r e s u l t s  

sf i n ~ t a b ~ l i ~ y  
e narrow width 

of these higher 

as cr i t ical  (38 t: order regions. 

a small change i n  
the load frequency, would remove the syste from these 
i n s t a b i l i t y  rsgi. s, the higher oxrdler r ions are not  

The theory in t h i s  inves t iga t ion  only predicts 
aries of the regions of i n s t a b i l i t y .  t h e  loca t ion  oE 

Within these  regions of ~ n ~ ~ ~ b i l ~ t y  the theory gives  no infor- 
mation about t h e  behavior of the  ~ t ~ ~ ~ ~ n ~ ~  plate except tha t  
the so lu t ion  of the pr ns  is unbounded. 
T h i s  r e s u l t  i r n p l ~ ~ ~  th l ikude of the plate 
w i l l  grow ~ ~ ~ e f ~ ~ ~ t ~ ~ ~  

~ ~ ~ r ~ ~ ~ t ~ l  r e s u l t s  ob ta in  d from a s t i f f e n e d  plate with 

These results appear t o  ind ica t e  
verse amplitudes is n e t  s u f f i c i e n t  

a s ing le  transversi (30, 39) also show t h a t  the higher 
t h e  order of the t e region, the less t h e  ~ ~ g ~ i t u d ~  
of the transv 
t h a t  the build-up 
t o  cawe the highe oral modes to be of concern. 
However, this pain further inves t iga t ion .  The 

sverse a ~ ~ l ~ t ~ ~ ~  of the reax stiffened plate reaches an 
r limit within a region of i n s t a b i l i t y  due t o  s t r e t ch ing  of 
i d ~ l e ~ ~ ~ r ~ ~ ~ ~  of the 

The r e s u l t s  given by Fig. 12 also show that for& greater 
than 0.6 and less khan 0.3 the  stiffened plake will 
always be uns 
defined regio %. made instabi2ity 
region ta an B v ib ra t ing  i n  an 
unstable  con t h a t  the v ib ra t ion  

assing through the above 

dicaL3.y from a value 
frequency of the  in-plane 
ts mentioned above 

orge ~ ~ ~ ~ a ~ ~ ~ i t y  area would 
the ~ ~ ~ ~ ~ v ~ ~ s ~  amplitmde 

build-up would be very small. 

The i r n F o ~ t ~ ~ ~ ~  of the first de and t h e  lesser 
~~~~t~~~ of the higher order te s is fu r the r  
i l l u s t r a t e d  ~~~n d i ng  sE the 9 ened plate is taken i n t o  
consideration. TI% ffects OS damping an the boundaries of 
t yp ica l  i n s t a b i l i t y  x-egions is shown i n  Fig. 15 which represents  
the results given by t h i eu ’ s  €unction modified to include 
damping, see Bolot in  8). Figure 15 shows that clamping causes 
the i n s t a b i l i t y  regions t o  ~~~h~~~~ from the Q / Z b L .  ordinate .  
The amount of withdrawal increases  as t h e  order of 
made increases ,  Ian case of an ~~d~~~~ temporal 
the portion of the i n s t a b i l i t y  region where t h e  upper and l o w e r  
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Fig .  1s Typloal I ~ ~ t ~ b l ~ l t y  Regions fn the &0/2fi) 
Parameter Spatoe (wfth $ a ~ p l ~ ~ )  
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boundaries coincide will disa 
Figure 15 thus indicates that the higher order temporal mode 
instzibility regions would not exist in a practical range for 
A. 
conducted on the stiffened plate with a simple transverse 
stiffener (30, 39). ft io also clearly illustrated in Fig. 15 
why the principal region of instability is considered to be the 
most critical as it exists for relatively small values of 

r if a danping is present. 

This result was observed in the experimental investigation 

oc '/=c cr even when damping is present. 

The theoretical results given in section 3.2 are based on 
a nondimensional representation of the data which is standard 
practice, However, such representation can lead to misinter- 
pretation of the results. Examination of these results could 
lead to the mistaken conclusion that the temporal mode instability 
regions associated with each of the spatial modes are separate 
from one another, Figure 16 illustrates such an exarple. This 
figure is taken from reference (39) and it represents the 
parametric instability regions for a rectangular plate reinforced 
with a single transverse stiffener as shown in Figure 17. 
Figure 26 shows the first kwo temporal mode regions of instability 
for each of the first three spatial modes bsupesimposed in the 
same ( - ~ ~ / c = . c r , ~ e )  parmeter space $or a value of /=cr = 
0.5. The above parameters are defined as follows, 

2 or 

2s 

Critical buckling parameter = b2Z$x,,/@ I) 

static in-plane load parameter = b 2 ~ ~ d - 2 ~  

Variable in-plane load parameter = b2NXt/Tf 2D 

Mass parameter for the plate = a4 

Cr 

ac' 

M 

As can be seen from Figure 16 the temporal made regions of 
instability associated with the various spatial modes can 
overlap. 
the second temporal mode region of instability associates' 
with the second spatial mode lies partly below the principal 
region of instability associated with the first spatial m o d e  
for values a cr greater than 0.4. Figure 2.8 illustrates 
an experimental test run (39) which shows the response of a 
stiffened plate when temporal mode regions associated with 
different spatial modes overlap. This figure shows the transient 
motion of the stiffened plate from the principal region associated 
with the second spatial mode which overlaps the principal region 
at this point. Figure 18 also indicates an interaction between 
the two regions of instability where they overlap, The build-up 
of amplitude far the second temporal m o d e  region is significant, 

Figure 16 also shows for large values of= /OL 
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The linear theory presented in this investigation does 
predict the location of the boundaries of the regions of 
instdbility at which the onset of parametric response takes 
place. 
designer w i t h  the necessary information so that a stiffened 
plate can be designed bo operate within the stable regions, 
In conclusion, when the rectangular plate reinforced with 
closely spaced stiffeners is analyzed as an equivalent 
orthotropic plate, the regions of parametric instability when 
expressed in non-dimensional form, are the same as those for 
the unstiffencad flat plate, 

The knowlege of these boundaryS3ocations provides the 
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Based on the results of this investigation the following 
conclusions can be dram: 

The theory'developed in this investigation completely 
predicts the parametric response, natural frequencies and 
static buckling values for any simply-supported rectangular 
stiffened plate, with closely spaced stiffeners. 

The most dangerous region of instability, from the stand- 
point of width, is the first temporal mode associated 
with the spatial mode which is the Closest to the 
fundamental static stability m o d e .  

The theories developed in this investigation only predict 
the boundaries of the regions of instability and they do 
not give informatian about the behavior of the stiffened 
plate within a region of instability. 

The theory developed for the stiffened plate treated as 
an equivalent orthotropic model. using the "smearing out" 
technique has a distinct advantage over the general 
orthotropic approach in that the stiffener size, spacing, 
and material properties are contained in the resulting 
expresaions €or the parametric response. 

When the stiffened plate is analyzed as an equivalent 
orthotropic plate the regions af instability when ex- 
pressed in nontlimensional f ~ m ,  are the same as those 
for the unstiffeaed flat plate, 
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APPENDIX 

T a b l e s  of Theoretical Results for the Orthotropic Model 

(Mathieu' 8 Equation) 
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